简介
BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的缩写。
BASE理论是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结, 是基于CAP定理逐步演化而来的。BASE理论的核心思想是:即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。
基本可用(Basically Available)
基本可用是指分布式系统在出现故障的时候,允许损失部分可用性,即保证核心可用。
电商大促时,为了应对访问量激增,部分用户可能会被引导到降级页面,服务层也可能只提供降级服务。这就是损失部分可用性的体现。
软状态( Soft State)
软状态是指允许系统存在中间状态,而该中间状态不会影响系统整体可用性。分布式存储中一般一份数据至少会有三个副本,允许不同节点间副本同步的延时就是软状态的体现。mysql replication的异步复制也是一种体现。
最终一致性( Eventual Consistency)
最终一致性是指系统中的所有数据副本经过一定时间后,最终能够达到一致的状态。弱一致性和强一致性相反,最终一致性是弱一致性的一种特殊情况。
在实际情景中,最终一致性分为 5 种:
- 1. 因果一致性(Causal consistency)
如果节点 A 在更新完某个数据后通知了节点 B,那么节点 B 之后对该数据的访问和修改都是基于 A 更新后的值,但对和节点 A 无因果关系的节点 C 的数据访问则没这限制。
- 2. 读己之所写(Read your writes)
节点 A 更新一个数据后,它自身总是能访问到自身更新过的最新值,而不会看到旧值。
- 3. 会话一致性(Session consistency)
会话一致性将对系统数据的访问过程限定在一个会话当中:系统能保证在同一个有效的会话中实现 “读己之所写” 的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。
- 4. 单调读一致性( Read consistency)
单调读一致性指如果一个节点从系统中读取出一个数据项的某个值后,那么系统对于该节点后续的任何数据访问都不应该返回更旧的值。
- 5. 单调写一致性(Write consistency)
指一个系统要能够保证来自同一个节点的写操作被顺序的执行。